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Hervé Glotin, Sébastien Paris
LSIS AMU ENSAM CNRS Univ. Toulon

glotin@univ-tln.fr, sebastien.paris@lsis.org

Yogesh Girdhar
Woods Hole Oceanographic Inst.

ygirdhar@whoi.edu

Abstract

We propose and evaluate a method for learning deep-
sea substrate types using video recorded with a remotely
operated vehicle (ROV). The goal of this work is to create
a labelled spatial map of substrate types from ROV video
in order to support biological and geological domain re-
search. The output of our method describes the mixtures
of geological features such as sediment and types of lava
flow in images taken at a set of points chosen from an ROV
dive. The main contribution of this work is the assembly
of a pipeline combining several unique approaches which
is able to robustly generate substrate type mixtures under
the varying lighting and perspective conditions of deep-sea
ROV dive videos. The pipeline comprises three main com-
ponents: sampling, in which a trained classifier and spatial
sampling is used to select relevant frames from the dataset;
feature extraction, in which the improved local binary pat-
tern descriptor (ILBP) is used to generate a Bag of Words
(BoW) representation of the dataset; and topic modelling
in which a variant of Latent Dirichlet Allocation (LDA), is
used to infer the mixture of substrate types represented by
each BoW. Our method significantly outperforms techniques
relying on keypoint based features rather than texture based
features, and k-means rather than LDA, demonstrating that
our proposed pipeline accurately learns and identifies visi-
ble substrate types.

1. Introduction
Substrate classification, the task of creating a spatial de-

scription of the nature of the seabed, is a fundamental fac-
tor in many aspects of ocean research. Domain research
in marine biology, physical oceanography and geology—
including classifying benthic habitat, modelling deep-sea
circulation and analyzing tectonic motion—depends on ac-
curate classification of substrate. In the context of the deep-
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Figure 1: Our system detects substrate in deep-sea ROV
video, learns the visible substrate types without supervision,
and finds the mixture of types in each sample.

sea, basic questions remain unanswered about what terrain
can be expected, particularly in geologically diverse mid-
ocean ridge environments. High exploration cost and diffi-
culty of sampling drive the need for remote sensing options
for data acquisition, including visual and acoustic surveys,
which in turn generate large volumes of data requiring anal-
ysis.

Manual analysis of substrate type is time consuming and
requires geological expertise. Subjective factors, such as
the choice of salient environmental features, make manual
analysis for multidisciplinary use subject to observer bias.
For these reasons, automatic data-driven systems are an at-
tractive option for substrate classification. In recent years
it has become common to infer seabed composition from
acoustic backscatter reflectance by measuring proxy vari-
ables like hardness or rugosity. However, in complex, ge-
ologically diverse environments, typical spatial resolutions
for acoustic methods are insufficient to capture the rapidly
changing substrate. Video data from ROVs excels in these
types of environments, as a local, high-rate source of envi-
ronmental information. For human analysts, video has the



added advantage that it can be intuitively interpreted and di-
rectly used for multidisciplinary purposes, such as counting
organisms for diversity and abundance analysis. In this re-
search, we present an unsupervised method to classify sub-
strate in video recorded at the Endeavour Segment of the
Juan de Fuca ridge, a volcanic-hydrothermal environment
about 300 km west of Vancouver Island, Canada.

Developing a system that can extract information about
substrate types in a large range of environments and video
quality conditions is challenging. Because of the high-cost
of manual labelling, producing training sets of sufficient
size for supervised methods is often impractical. In addi-
tion, the range of relevant substrate types across different
environments is large, meaning that new training sets must
be developed for each new area to be mapped. Models are
further complicated because a single substrate type is very
rarely the only significant substrate feature in an image. In
this common situation, models that produce a single label
do not adequately capture the complexity or continuity of
the substrate, and therefore a model of the mixture of sub-
strate types in each frame is necessary. Finally, due to the
high cost of acquisition, and consequent lack of availability
of data from deep-sea environments, practical approaches
must perform well on data recorded without the constraints
of a photogrammetric survey such as consistent lighting, fo-
cus, and perspective. This ensures that the method is as
widely applicable as possible, but also introduces a set of
significant challenges.

Contributions: We present a system that learns substrate
types and maps their locations from the video and naviga-
tion data recorded on a deep-sea visual survey. The main
contribution of the work is the assembly of a pipeline com-
bining several approaches, which is able to robustly gen-
erate substrate labels under the varying lighting and per-
spective conditions that are typical for deep-sea ROV dive
videos. This system requires minimal training data; instead
it uses a topic-model to infer a small set of topics which
each form a sparse probabilistic representation of a sub-
strate category. For each frame in the video, a sparse distri-
bution of the topics is simultaneously inferred, representing
a mixture of the substrate categories. Topic models work on
a bag-of-words (BoW) representation of data. Therefore,
our method includes a sequence of steps aimed at produc-
ing a visual BoW that represents the substrate visible in an
ROV dive. We demonstrate that our method produces topics
that correlate highly with the true geological substrate types,
outperforming classic unsupervised methods on a deep-sea
video survey. Our method was developed for a particular a
mid-ocean ridge video dataset, however initial experiments
show promise in generalizing the approach to substrate clas-
sification for other datasets and environments.

2. Related Work

As automatic substrate classification has become a topic
of interest, there have been a number of computer vision
approaches for measuring substrate-related variables.

[9] proposes a method to measure seabed complexity
by segmentation, and applies a random forest classifier on
those segments to identify certain objects in a supervised
manner. [16] develops a method based on Self Organiz-
ing Maps (SoM) to learn a feature representation for seg-
menting seabed images, and shows that they successfully
identify metallic nodules with a simple supervised classifier
in the learned feature space. These represent sophisticated
supervised methods that can be useful in certain situations,
however their reliance on training is problematic in contexts
where ground-truth is time consuming to produce.

In [15, 14, 18] Pizarro et al. describe and demonstrate
a system that performs visual habitat classification using
topic models on coastal coral reef environments. Their ap-
proach performs clustering in topic space, using the topic
assignments of labelled images as cluster centers. In con-
trast, our system learns topics that are themselves represen-
tative of substrate types. Our interpretation of the topics is
more sensitive to the quality of the images and their BoW
model, but has the key benefit of naturally providing mul-
tiple dimensions of comparison rather than using a single
score for similarity between images.

Our approach is based on the Realtime Online Spa-
tioTemporal topic model (ROST), developed in [4]. Details
on how we use this model are described in Section 5. [5]
demonstrates an application of ROST to terrain classifica-
tion problems, seeking to maximize the diversity of terrain
covered in a small amount of video. That work focuses on
learning the topic-model in real-time, and using it for an
efficient coverage strategy, spending more time surveying
‘interesting’ terrain. The method is demonstrated on satel-
lite imagery and in a shallow reef environment. [6] demon-
strates an application of ROST to classification of deep-sea
video. In both these systems, the authors have had a rela-
tively high degree of control over the quality of their video
and focus on efficiently learning the topic model. In con-
trast, we emphasize developing a full and robust feature ex-
traction pipeline that can accommodate video recorded un-
der less than ideal photogrammetric conditions.

3. System Overview

Our system consists of a pipeline for learning and map-
ping the substrate types present in the video and navigation
data from an ROV dive.

First (see Figure 2a), our system detects the frames con-
taining substrate using a Support Vector Machine (SVM)
trained on GIST descriptors, a representation of the over-
all shape of each image. of each image. We then select
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Figure 2: System Overview. From top to bottom: (a) Sam-
pling Strategy (Section 4.1), (b) Feature Extraction (Sec-
tion 4.2), (c) Topic Inference (Section 5).

a spatially distributed subset of these frames to include in
our BoW model. Next (see Figure 2b), we extract textu-
ral information from the sampled video by using a noise
suppression heuristic followed by extracting ILBP image
descriptors, and by constructing a vocabulary of the most
discriminative codes. Finally (see Figure 2c), we fit a spa-
tiotemporal topic-model using the BoW from each image
separately. We interpret the topic mixtures produced by the
topic-model as the percentage of each substrate type present
in that image.

The remainder of the paper is organized as follows:
Section 4 explains the process used for building the BoW
model, including choosing a sample set (Section 4.1), and
extracting ILBP descriptors (Section 4.2). Section 5 de-
scribes the topic-model and its applicability to the task at
hand in more detail. Section 6 reports the details of the ex-
perimental dataset represented by the the East Flank video
survey and demonstrates our method’s performance on this
dataset.

4. Substrate Bag-of-Words Model

In order to simplify the challenges of learning a mean-
ingful, low-dimensional model of the substrate, our system
builds a BoW representation of the video. This process con-
sists of three steps: First, our system selects a set of sample
frames from the dive video so that most sample frames have
substrate, and so that no region is oversampled. Second,
our system extracts features from each of the samples. We

choose ILBP as a powerful and efficient texture descriptor.
In order to ensure that the descriptors represent the substrate
rather than other visual features, we apply noise reduction
in the form of a 2D bandpass filter before extracting tex-
tureal information. Third, our system selects a vocabulary
from the feature space, choosing and discretizing the most
discriminative ILBP feature dimensions by their variance
across the samples.

4.1. Sampling Strategy

The sampling strategy consists of two steps: First, our
system uses an SVM to detect frames that contain substrate.
Then, it selects a subset of those frames based their cor-
responding spatial location, ensuring that samples are as
evenly distributed as possible in space. (See Figure 2a)

4.1.1 Spatial Envelope Substrate Detector

Unedited video from ROV dives contains large portions that
is irrelevant for substrate classification. For instance, in the
East Flank video survey 847 out of 2000 manually assessed
frames randomly selected from the dive contained no sub-
strate whatsoever (See Table 1a). This data is problematic
for unsupervised classification because it skews the distri-
bution of features. To mitigate this problem, we remove
frames which do not contain substrate by training an SVM
on the spatial envelopes of relevant and irrelevant frames.

By spatial envelope, we refer to the holistic represen-
tation of the shape of a scene implemented as the GIST
descriptor described in [12]. GIST descriptors have been
shown to encode high-level perceptual dimensions of the
spatial envelope such as ‘naturalness’, ‘openness’, ‘rough-
ness’ etc. This descriptor is computed using a method based
on Gabor filter responses in multiple orientations and scales,
and in a grid of image windows across the image. GIST de-
scriptors are appropriate as the local appearance of images
with substrate varies dramatically, and the spatial envelope
is more important that any local features.

We manually labelled 2000 randomly selected frames as
either relevant or irrelevant (i.e. with or without substrate)
for our subsequent classification problem. We trained an
SVM using 1000 frames randomly selected from these 2000
labelled examples, and evaluated its performance on the
other 1000. We used the MATLAB function fitcsvm
with default parameters as the SVM implementation [11].
Table 1b shows the precision and recall computed over
all frames in the test set. The results indicate that this
method successfully discriminates frames with substrate
from frames without it.

4.1.2 Spatial Subsampling

Frames containing substrate are distributed unevenly in
space—if one frame contains substrate it is likely that in



Substrate No Substrate
Train Set (True) 564 436
Test Set (True) 589 411

Full Dataset (Estimated) 6859 3141

(a) Number of relevant and irrelevant frames in our example video.
Precision Recall F1-Score

Train Set 0.7942 0.9645 0.8711
Test Set 0.8117 0.9440 0.8729

(b) Performance of GIST SVM substrate detector.

Table 1: GIST SVM performance

the adjacent frames the ROV was in a similar location and
orientation, and those frames will contain substrate as well.
In addition, during an ROV dive the pilot may have sped up,
slowed down, or completely stopped in response to equip-
ment conditions or mission objectives other than the visual
survey. To ensure the distribution of samples matching the
true distribution of substrate types, we take a spatial sub-
sampling of the frames with substrate.

Using the ROV navigational data, the spatial subsam-
pling step selects a subset of the navigation points that are
all no less than a distance threshold away from from one-
another. Using the Latitude and Longitude measurements at
each sample in our dataset, our system computes local Nor-
things and Eastings (meters N and E from the start). Then,
starting at the first frame, it adds samples to the spatial sub-
sample one at a time, provided that they are not within a
given radius of any point already in the subsample. The ra-
dius parameter provides a means of controlling the compu-
tational costs of our system. Choosing an appropriate value
is a trade-off between the resolution and processing time
required for the resulting model.

4.2. Feature Extraction

We observe that image textures provide a more natural
feature representation of substrate types than other stan-
dard representations such as keypoints or color histograms.
Whereas keypoint-based descriptors are too sensitive to the
presence of particular objects and color-based descriptors
are too sensitive to lighting conditions, texture-based de-
scriptors give a high-level description of the set of patterns
that compose a scene.

We choose to describe the textures of our video with
ILBP, a variant of the Local Binary Pattern that accommo-
dates scale and has improved resilience to noise. To ensure
that the extracted textures describe the substrate and not the
lighting conditions or particles in the water column, we ap-
ply a heuristic in the form of a spatial bandpass filter. (Fig-
ure 2b)

4.2.1 Improved Local Binary Patterns

Local Binary Patterns represent textures by encoding the lo-
cal brightness variations in 9-pixel squares as compact bi-
nary codes. Because they can be computed efficiently on
integral images, they are a popular alternative where other
texture representation approaches like Gabor filter banks are
too slow. ILBP, originally introduced under the name Multi-
Block LBP in [10], extends LBP, firstly by accommodat-
ing scaled pixel areas, and secondly by adding information
about the center pixel. Whereas in LBP each pixel is com-
pared to the center pixel in a 3x3 pixel region, in ILBP, each
pixel, including the center pixel, is compared to the mean
value over an N × N pixel region. Liao et al. have shown
that this improves the robustness of LBP as well as the abil-
ity to encode larger image structures. We use mlhspyr lbp,
a multi-channel, multi-scale, windowed ILBP implementa-
tion described in [13].

4.2.2 De-noising Heuristic

Even when deep-sea video is recorded under ideal condi-
tions its textures are affected by significant noise. Because
the ROV itself carries the only light source, the relative ori-
entation of the ROV and the substrate affects which areas of
the frame are well-lit and which areas are dark. In terrains
with high-relief, there is also significant shadowing. In ad-
dition, suspended particles in the water column contribute
significant point-based noise.

To reduce these effects, our system applies a spatial
bandpass filter before extracting features. Specifically, it
uses a 2D Gaussian bandpass filter with the kernel

K = (1− e−(x2+y2)/2c2lowcut)(e−(x2+y2)/2c2highcut) (1)

The parameters clowcut and chighcut determine the mini-
mum and maximum frequencies represented in the filtered
image in cycles/image. We chose the values 4 and 100 cy-
cles/image respectively for these parameters based on the
approximate minimum and maximum size of substrate fea-
tures of interest in the video.

4.3. From Histogram of ILBP to Words

Our feature extractor outputs one histogram per image—
each bin corresponding to an LBP code in a particular re-
gion, at a particular scale and for a particular color channel.
Since we are interested in encoding the distribution of tex-
tures rather than their spatial arrangement in the images,
our system sums over the corresponding LBP codes in each
window. This results in a large (i.e. 10,752 dimensional)
histogram, of which only relatively few bins vary across the
dataset.

Our system selects only the V bins with the highest vari-
ance with respect to their mean across the set of sample



images in the BoW. The number of occurrences in each of
these bins represents the number of occurrences of a word
in our model. The bins which are not considered do not con-
tribute to the BoW as their occurrence provides less infor-
mation discriminating between the sample images. Choos-
ing the vocabulary size parameter V is a tradeoff between
the size of the inference problem and the amount of detailed
information that should be considered. We sorted the bins
by their variances and found that the relationship between
rank and variance was well fit by a negative exponential
function. This implies that most of the overall variation was
accounted for by only a relatively small fraction of the bins,
and that above a small minimum value for V , the BoW rep-
resentation is very similar. We found that setting V = 3000
produced a tractable inference problem, and that deviation
within an order of magnitude larger did not significantly af-
fect the quality of the results.

5. Topic Model for Substrate Mapping
Topic models are a family of Bayesian probabilistic

models, originally introduced in the context of semantic
classification of text corpora. They have been shown to be
suitable for many domains where an unsupervised semantic
clustering is desired and an appropriate BoW representation
of the data is available [1]. We use an extension of Latent
Dirichlet Allocation (LDA) in our system.

LDA is used to infer a probabilistic representation of
the hidden semantics of a collection of BoW called docu-
ments. Each document is modelled by a probability distri-
bution over a fixed number of topics. Each topic, in turn,
is defined as a probability distribution over the set of all
possible words. In computer vision applications, the set of
words is defined as the set of discrete features representable
in the BoW model (defined in Section 4 for our application)
rather than a set of literal words, and each BoW is treated
as a document. The LDA model assumes that each word
in a document was created by first sampling a topic from
the document-topic distribution, and then sampling a fea-
ture from the corresponding topic-word distribution.

The goal of LDA is to estimate these two distributions
given the document-word distributions. These distributions
can be estimated using Gibbs sampling or other Markov
Chain Monte-Carlo methods. By choosing Dirichlet pri-
ors for both sets of distributions, the probability that a word
was generated from a topic can be efficiently estimated us-
ing count variables only. In addition, the choice of a sym-
metric Dirichlet prior allows for control over the sparsity of
the distributions through the hyperparameters α and β. In-
tuitively, the hyperparameters can be understood as control-
ling how many different words will have high probability
in each topic and how many different topics will have high
probability for each document. There have been numerous
successful examples of visual topic-models for classifica-

tion and segmentation of natural scenes [2, 17, 19].
Our system uses ROST, which improves upon LDA in

several ways. First, ROST takes advantage of the spatiotem-
poral context of the observations to compute the prior distri-
bution of the topic labels, resulting in more accurate gener-
ative model for observations that have spatiotemporal con-
text. Second, the Gibbs sampler proposed by ROST [7] has
been optimized so that it can process streaming observation
data in realtime.

6. Results
6.1. Dataset

We validate our method using data recorded at the
Endeavour Segment of the Juan de Fuca Ridge, a mid-
ocean ridge environment 300 km West of Vancouver Island,
British Columbia, at approximately 2.2 km depth. Specifi-
cally, our data is from the East Flank of Endeavour, a gently
sloping area featuring a variety of substrate types. Mission
objectives on this dive were to perform a visual survey for
suitability of a scientific instrument installation—much of
the video shows substrate, but distance, angle, and speed
are inconsistent throughout the recording.

The data consist of 30 fps HD video and 10 Hz ultra-
short baseline (USBL) acoustic positioning. The ROV
moved at an average rate of 0.5 knots (approx. 0.26 m/s),
through two partially overlapping lawnmower patterns, one
up and down a gentle slope, and one across the flat area at
the base of the slope, with a total distance travelled of just
over 5.6 km.

With guidance from an expert in deep-sea geology, we
defined seven categories that represent the types of im-
ages seen in the sample. These categories were ‘Sed-
imented’ (SED), ‘Interrupted Lava Flow’ (INT), Pillow
Lava Flow’ (PIL), ‘Cliff or Wall’ (CLIFF), ‘Other Rock’
(O.RCK), ‘Turbid Water’ (TURB), and ‘Substrate out of
Range’ (DARK). We randomly selected 500 frames from
the dataset, and labeled each with a probability distribution
over these seven types, using a minimum increment of 0.25
for each category. Images exemplifying each category can
be seen in Figure fig:best1gt.

6.2. Experimental Results

We generated a BoW representation for each frame in the
sampling using the histogram of ILBP codes described in
Section 4. We used scale factor 2 for the ILBP region with
a uniform 6x7 grid of non-overlapping windows. Initial
experimentation showed that these values produced good
results, and that additional scales did not cause significant
improvement. We then ran the topic model on the BoWs,
choosing 7 for the number of topics (the same as the num-
ber of true categories). We ran LDA using each pair of the
values {0.01, 0.1, 0.2, 0.4, 0.8, 0.9, 0.99} for both hyperpa-
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Figure 3: (a) Representative examples of the categories (top to bottom) ‘Sedimented’, ‘Interrupted Lava Flow’ ‘Pillow Lava
Flow’, ‘Cliff or Wall’, ‘Other Rock’, ‘Turbid Water’, and ‘Substrate out of Range’. (b) Images with highest proportion of
words assigned to each topic. The rows contain the best 7 images for the topics paired with the corresponding category in (a)

(a) (b)

Figure 4: Correlation matrix between ground-truth cate-
gories (rows) and topics (columns). In (a) topics are shown
unordered. In (b) topics are re-ordered so that the topic
in column i is paired with the category in row i for a
maximum-correlation pairing.

rameters α and β. We report the performance of the model
with minimum final perplexity, α = 0.1, β = 0.8. Initial
evaluation showed that changing the hyperparameters did
not have a strong impact on the final model.

To evaluate the degree to which each ground-truth cat-
egory was represented by some topic generated by our al-
gorithm, we produced a one-to-one pairing between cate-
gories and topics. First, we calculated the Pearson ρ cor-
relation between each ground-truth category and each topic
produced by our algorithm using all 500 of the ground-truth
frames (Figure 4a). Then, using the Kuhn-Munkres Algo-

rithm [8], we found an optimal assignment of topics to cate-
gories. Defining the cost of assigning category iwith topic j
as Cost(i, j) = 1− ρi,j results in an assignment with max-
imum total correlation. Figure 4b shows the correlations
after re-ordering the topics so that the topic assigned to cat-
egory i is in the ith column. The high-correlation along the
diagonal in this matrix and relatively low correlation every-
where else shows that topics correlated well with few cate-
gories in most cases.

Figure 3b shows the most representative frames for each
topic. These images show the 7 frames that have the high-
est proportion of each topic throughout the dataset. Note
that some topics were much more prevalent than others, so
an image may be among the best examples of a particular
topic in the dataset without that topic being the top label for
the image. For instance, many of the strongest examples
of interrupted lava flows contain more sediment than inter-
rupted lava flow. Comparison between these examples and
the examples in Figure 3a suggests that the topics assigned
to sediment, turbid water, and substrate out of range are ac-
curately recovering features of their categories, and that the
other assignments are somewhat less accurate.

We compare the correlations for the assigned topic-
category pairs against correlations computed similarly for
three baseline strategies: (1) SIFT+K-Means - For each
image we compute dense SIFT features at keypoints on
a 100 × 100 grid, then, using the features from 10% of
the frames chosen randomly, we quantize the feature vec-
tors into a dictionary of size 3000, and replace each of the



Sediment Interrupted Pillow Cliff Other Rock Turbid Water Out of Range
SIFT+K-Means 0.2898 0.0718 0.4162 0.1721 -0.0137 -0.0271 0.3630
LBP+K-Means 0.3526 0.0092 -0.0029 0.3474 0.0508 0.6385 0.4971

LBP+Filt+Discr.+K-Means 0.3661 0.1116 0.0849 0.2916 -0.0685 0.7509 0.3466
LBP+Filt+Discr.+Topic-Model 0.7489 0.3899 0.3884 0.4152 0.2580 0.8153 0.5664

(a) Pearson ρ (498) for best-match topic with each category. For LBP+Filt+Discr.+Topic-Model p-value was � 0.001.
Sediment Rock No Substrate

SIFT+K-Means 0.4413 0.3492 0.0459
LBP+K-Means 0.5059 0.3541 0.5770

LBP+Filt+Discr.+K-Means 0.5350 0.4930 0.4601
LBP+Filt+Discr.+Topic-Model 0.7489 0.7156 0.8015

(b) Pearson ρ (498) for best-match topic with each high-level category. For LBP+Filt+Discr.+Topic-Model p-value was � 0.001.

Table 2

original feature vectors with its closest neighbor in the dic-
tionary. We compute the histogram of quantized features
for each frame, and cluster the feature histograms using K-
Means again. (2) LBP+K-Means - We compute ILBP fea-
ture histograms for each frame, using mlhspyr lbp without
the noise reduction steps described in Sections 4.2.2 and
4.3. We cluster the ILBP histograms for each frame using
K-Means. (3) LBP+Filt+Discr.+K-Means We compute the
document histograms used as input to our topic model, us-
ing all steps described above including noise suppression
and selecting only the discriminative histogram bins, but
cluster them with K-Means rather than ROST. For each of
these three strategies, we compute the correlation of each
cluster with each category from the ground-truth, and pro-
duce an optimal assignment.

Table 2 shows the values of the correlation for each
topic-category assignment. This table shows the degree
to which the value of each category was correlated to the
value of its assigned topic for all of the ground-truth frames.
Strong correlation for a category-topic pair suggests that the
value of the topic was proportional to the value of the cate-
gory in most frames. This analysis reflects the quality of the
mixtures produced by our system rather than just the quality
of the single top category in each frame.

Our method outperformed the three baseline methods,
having the highest correlation on 6 out of 7 categories.
SIFT+K-Means produced a cluster with high correlation
with the pillow category, but its performance on all other
categories was poor. These values show a median strength
of association 2.5 times larger between topics and cate-
gories than beteen SIFT clusters and categories (strength of
association is defined as the absolute value of correlation).

Note that for our topic-model approach, p-values were
� 0.001, whereas for the other approaches, p-values var-
ied, sometimes taking significantly higher values. These
p-values represent a strong rejection of the hypothesis that

the topics were not correlated with the categories for our
method, and a weaker one for the baseline strategies.

In absolute terms, the values of the correlations reflect
the intuition given by the best examples of each topic: The
categories sediment, turbid water, and no substrate are each
strongly correlated with their assigned topic, but the other
categories are only weakly correlated with their assign-
ment. Therefore, we additionally analyze our system’s per-
formance classifying the high-level categories ‘Sediment’,
‘Rocky’, and ‘No Substrate’. These categories were con-
structed by combining the original categories, as seen in the
leftmost column of Figure 3a. We combined the ground-
truth labels, topics, and labels for the three baseline meth-
ods by summing over the groups to be combined into each
of the three categories. The performance of the resulting
models is presented in Table 2b, showing that our method
has strong correlations between the combined topics and all
three of the high-level categories.

7. Discussion
Our results constitute a preliminary success in unsu-

pervised substrate type mapping on a challenging video
dataset. The categories not consistently identified by our
system were semantically overlapping, and to some degree
visually similar. This has allowed us to make use of the sys-
tem as-is to map higher-level substrate categories. Although
less specific than the original categories, this still represents
interesting and useful data to ocean scientists. We present
a map of these substrate types in Figure 5. Maps of this
type provide an interface between our method and biolog-
ical or geological research which seeks to use information
about substrate type. For instance, this map could be used in
conjunction with a map of observations of a certain species
to help answer questions about how habitat suitability is re-
lated to substrate type. Note that the substrate type mixtures
are spatially consistent and vary smoothly in adjacent sam-



Figure 5: ROV track with topic mixtures at each sample point. The line represents the path of the ROV, and each point is the
location of a substrate sample image. At each point, there are circles for each of the three topics, with their sizes representing
the mixture of the topics in that sample.

ples. This reflects the transitional areas which are not well
described by a single label.

In collecting the ground-truth data, we observed that a
correct classification is extremely context dependent and
somewhat subjective. Depending on the intended applica-
tion, the salience of different features varies subjectively,
for example, a frame containing mainly sediment with one
area of exposed pillow lava might might be of high interest
to one researcher but of little interest to another. In addition,
it is unclear how a ground-truth dataset should measure the
amount a substrate type is represented in each frame. Al-
though it is tempting to use percent cover as a way to quan-
tify these observations, this approach depends on having
very precise definitions of the boundaries between substrate
types which are not always available.

Emerging methods for hierarchical topic models could
help to resolve the differences in scale of similarity between
the desired categories [3]. In addition, directly incorporat-
ing the noise reduction and vocabulary learning steps into
the probabilistic model could improve results by estimating
the parameters from data, rather than setting them based on
manual experimentation.

As a preliminary investigation for future work, we ran
our algorithm on two additional datasets: One on the nearby
High-Rise vent structure featuring a completely different set
of substrate types and geoforms, and a second from Barkley

Canyon—a biological diverse yet geologically uniform en-
vironment composed mainly of sediment. Preliminary re-
sults appear promising, suggesting that this system could
be used in other environments with minimal modifications.

8. Conclusion

We have presented a method for learning and mapping
deep-sea substrate types. This method computes a mixture
of types for each frame in an ROV video using a texture-
based BoW representation of the images and a spatiotem-
poral topic model. It requires minimal training data, and
includes measures to compensate for the different kinds
of noise associated with deep-sea ROV video recordings.
We have shown that in a mid-ocean ridge flank environ-
ment, this method recovers topics that correlate highly with
ground-truth substrate categories. Our analysis shows that
the described pipeline significantly outperforms conven-
tional methods, demonstrating the utility of the combination
of proposed techniques for the substrate labelling task.
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