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Abstract—In this work we develop and demonstrate a prob-
abilistic generative model for phytoplankton communities. The
proposed model takes counts of a set of phytoplankton taxa in
a timeseries as its training data, and models communities by
learning sparse co-occurrence structure between the taxa. Our
model is probabilistic, where communities are represented by
probability distributions over the species, and each time-step is
represented by a probability distribution over the communities.
The proposed approach uses a non-parametric, spatiotemporal
topic model to encourage the communities to form an in-
terpretable representation of the data, without making strong
assumptions about the communities. We demonstrate the quality
and interpretability of our method by its ability to improve
performance of a simplistic regression model. We show that
simple linear regression is sufficient to predict the community
distribution learned by our method, and therefore the taxon
distributions, from a set of naively chosen environment variables.
In contrast, a similar regression model is insufficient to predict
the taxon distributions directly or through PCA with the same
level of accuracy.

I. INTRODUCTION

Phytoplankton are microscopic organisms that form the
base of marine food webs. They produce chlorophyll and
other pigments to harvest sunlight and fuel photosynthesis, so
they can utilize CO2 and other nutrients to produce Oy and
new organic matter. As such, they play critical roles in global
biogeochemical cycles and in structuring marine ecosystems.
Marine scientists have long used techniques to measure the
amount of chlorophyll in a water sample as a proxy for
phytoplankton biomass [1]. These methods are coarse and give
only bulk indices, with no information about which species
of phytoplankton are present. Phytoplankton are extremely
diverse, however, and their community structure plays a major
role in shaping ecosystems and their functions. As an extreme
example, particular species are known to cause toxic blooms
that can threaten wildlife as well as human health.

To meet the gap in observational capability that includes
taxonomic resolution, Sosik and Olson have developed the
automated, submersible Imaging FlowCytobot (IFCB) [2] and
a coupled analysis system [3], [4]. This system can detect
and classify phytoplankton automatically in small samples
of ocean water collected serially over long periods of time
(weeks to years). The taxa classified in the Martha’s Vineyard
Coastal Observatory (MVCO) deployment of IFCB, used in
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Fig. 1: System Overview: Imaging FlowCyto Bot (top left)
automatically detects and classifies phytoplankton. We ag-
gregate the counts of all the taxa on each day in long-
term deployment of IFCB, and use this dataset to learn a
probabilistic community model. We use adjacent sensors at
Martha’s Vineyard Coastal Observatory (12m Sea Node, shown
bottom left) and fit a simple regression model, predicting taxon
distributions from environment variables using the learned
communities. By demonstrating that our method performs this
task well, we show that our community model is both accurate
and interpretable.

this work, show a remarkable level of detail, and are presented
in Fig. 3, (bottom).

In this work we present a model which factors the daily
taxon count aggregates produced by the IFCB into a small
number of communities. A key advantage of our method is
that the communities it produces are sparse, and the daily
community distributions it produces are temporally smooth.
The result is that the learned representation of the data is
more interpretable than standard decomposition methods such
as PCA. It is our goal that community distributions should not
only fit the data, but also provide a meaningful decomposition
enabling further modelling and intuitive understanding. To this
end we choose a simplistic regression model, trained to predict
the community distributions, and therefore taxon distributions,
from a basic set of oceanographic and meteorological vari-
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Fig. 2: The graphical model used by our community model.

ables. Rather than developing the perfect regression model
or choice of variables, we choose a community model that
allows for a very naive regression model to perform well.
This ensures that the community model affords a simple yet
accurate interpretation.

We demonstrate that our method achieves this goal by
training our community model on an extensive dataset from
a fixed IFCB deployment at the Martha’s Vineyard Coastal
Observatory (MVCO), in Cape Cod, Massachusetts. There
are many choices of probabilistic community model which
fit the data well, therefore we select among them using their
performance on the regression task. Remarkably, the best
community model shows strong seasonal patterns, despite the
fact that our community model makes no such assumptions.
We find that our approach is relatively accurate in predicting
the original taxon distributions from environment data. In
contrast, standard approaches such as direct regression, or
regression on a PCA decomposition of the taxon distributions
do not achieve the same level of accuracy with the basic
regression model.

Our recent work [5] proposed the use of a similar phyto-
plankton community model for robust detection of hotspots of
a spatially distributed plankton taxa. This work instead focuses
on modeling community distribution of plankton observed at
a stationary location, over a long period of time, and using the
model to predict plankton distribution based on environmental
conditions.

II. APPROACH

The proposed phytoplankton community model is adapted
from a Bayesian non-parametetric topic modelling approach
to discover common co-occurrence patterns in the taxa count
data. The observed taxon distribution at each time step is
modelled by a mixture of communities (topics), and each
community is a probability distribution of the taxa. Successful
topic modelling approaches from the text modelling literature
often use Dirichlet priors to encourage topics to be sparse.
Analogously, we use Dirichlet priors in our model to ensure
that each community has a small number of taxa with positive
probability [6]. For the mixture of communities at each time
step, we use a (spatio) temporal Dirichlet process prior [7].
This prior encourages the community mixtures to be sparse,
similar to a standard Dirichlet prior, but also causes the
community mixtures to be temporally smooth, and avoids the
need know the number of communities a priori.

The full model structure is shown in Fig. 2. Learning in
this model involves finding a latent community assignment z; ;
for each individual plankton observation w; ;. The maximum
likelihood parameters O, ® are estimated jointly, such that
P(ng = k‘|t) = @t)k, and P(wm = ’U|Zi7t = k‘) = q)k:,v' After
learning, the maximum likelihood taxon distributions under the
model can be trivially recovered by the product ©®.

Rather than evaluating the quality of different community
models by the accuracy of their maximum likelihood taxon
distributions, which can be made arbitrarily good on the
training set by introducing more communities, we train a
simplistic regression model on the community distributions.
We take a set of environment variables, averaged over the
same daily observation windows used for plankton count
aggregation. We reject outliers based on the median absolute
deviation of each variable. Then we standardize each variable
independently, subtracting its average and dividing by its
standard deviation. Finally, we fit a linear ridge model of the
community distributions from the standardized environment
variables.

After training, we can take a set of environment measure-
ments, shift and scale them using the standardization param-
eters, predict the community distribution using the learned
weights, and finally predict the maximum likelihood taxon
distributions given the predicted communities. If the maximum
likelihood taxon distribution for a given set of communities is
not accurate, then this regressor will perform poorly, reflecting
the fact that the community model did not work well. However
the regression model will also perform poorly if the community
model is accurate, but the presence of certain communities
is too complicated to predict by a linear function of simple
environement variables. In contrast, the best performing com-
munity models on the regression task are both accurate and
simple enough to be interpreted naturally.

III. EXPERIMENT

We demonstrate our method on a dataset recorded contin-
uously from Jan. 2009 to Jul. 2016 at the MVCO. The IFCB
was configured to automatically sample from 5 ml of surface
seawater approximately every 20 min. The classification sys-
tem generated an average of over 1100 observations per day,
distributed over 47 taxa (Fig. 3, bottom).

We aggregated the observations to produce the taxon dis-
tribution for each day during the 7.5 year period, and used this
as input to our method. For the regression model, we chose
a suite of 18 environment variables from the MVCO ocean
data and meteorological data summaries (Fig. 4). In addition to
being naively chosen, the environment data features significant
gaps and systematic noise due to the practical challenges of
long-term ocean sensor deployments. Much of the systematic
noise was suppressed by our outlier rejection method, yet the
regression task remains extremely challenging.

We trained our community model on the taxon distributions
over the entire period multiple times for different hyperpa-
rameter settings. The hyperparameter search process involved
varying « (prior for sparsity of community distribution on
each day), S (prior for sparsity of taxa in each community),
v (prior for data complexity), and g (prior for temporal
smoothness of community distributions). For each community
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Fig. 3: The time series plot shows the distribution of predicted plankton taxa (top) and observed groundtruth taxa distribution
(bottom). We see that the predicted distribution is able to capture most of the low frequency structure of the observed data. The
ground-truth data is publicly available at http://ifcb-data.whoi.edu/mvco/



model corresponding to a different combination of choices
of these hyperparameters, we trained the regression model
8 times, once using each year as the test set and the other
6.5 years for training. Within each training set, we chose the
regularization parameter for ridge regression using hold-one-
out cross validation. Finally, we used the resulting regressors
to predict the respective held-out community distributions for
each year, and used the respective community models to
predict the taxon distributions.

We demonstrate the utility of our method in comparison to
two more standard regression techniques. The first is to predict
the taxon distributions directly with a similar ridge regression
model and training procedure. The second is to first take a
PCA decomposition of the taxon count data, using the first K
principle components, where K is the same as the number of
communities used by our model, and then use the same ridge
regression model and training procedure to predict the PCA
weights, and finally project the weights back to predict the
taxon distributions.
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Fig. 4: Inputs to our regression system, oceanographic and
meteorological Variables recorded at the Martha’s Vineyard
Coastal Observatory over the period Jan. 2009 to Jul. 2016.
Presented as our system receives them, centered and scaled to
a normal distribution. White spaces indicate gaps in the data or
where outlier data was removed. This data is publicly available
at http://www.whoi.edu/mvco/data

IV. RESULTS

We evaluated the resulting regression systems for all hy-
perparameter settings as well as the two baseline methods
by comparing the predicted taxon distributions to the true
distributions on each day in the dataset. Our error measure
is the KL-Divergence between the predictions and the held-
out distributons'. We chose the community model with the
lowest average KL-Divergence over all the days in the dataset,
ultimately picking a model with 6 active communities. The
predicted taxon distributions for this model are shown in
Fig. 3 (top).

IKL-Divergence is a measure of the information lost when approximating
one distribution with another, equal O if the distributions are identical and
oo if they do not have the same support. If we sample a taxon randomly
from the estimated distribution, and that taxon has probabilities p, ¢ under
the estimated and true distributions respectively, the KL-Divergence gives the
expected value of log%.
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Fig. 5: Comparison of daily taxon distribution prediction
errors, for each of the three regression methods, for each of
the years in the dataset. For each year, the other 6.5 years were
used as training data. Note that for each year the Community
model based regression method (ours, left) shows the lowest
median KL-Divergence (lower = more accurate).

Fig. 5 shows the taxon distribution prediction errors for
this community model and our two baseline models, broken
out by year. The boxes represent the distribution of prediction
errors for nearly 365 days in 2009 through 2015, and 172
days in 2016 (nearly 365 because of some small gaps in the
taxon count data). Our community model (leftmost for each
year) achieved the lowest median error on every year in the
dataset. We found that by optimizing the hyperparameters for
the regression task, we were able to choose an interpretable
representation of the community structure. In contrast, PCA
does not feature any prior for temporal smoothness. As a
result although its prediction error is on average only a little
less accurate than our model’s, the sequences of predictions it
makes are sometimes implausible, featuring taxon distributions
which change much more rapidly than the observed data. We
found that both baselines were extremely susceptible to noise
in the environment data, on average performing better than
expected, but occasionally making extremely poor predictions
(Fig. 8). With our model, the regression problem is of a lower
dimensionality than for direct regression, and therefore less
susceptible to overfitting. For this reason when both models
are presented with the same small amount of training data,
our model is more able to avoid large errors for new inputs
unlike the training data.

An intriguing result of our community regression model is
that nearly all of the magnitude in the weights of the learned
regression parameters is either on the day of the year, the
water temperature, or the number of plankton classified for
a given day (Fig. 7b). Note that we have used a cos, sin
pair to encode cyclic variables. In the case of the day of
the year, the positive cosine direction encodes Winter and
the negative Summer, while the positive sine encodes Spring
and the negative encodes Fall. From our regression matrix,
we can see the interpretations ‘community 0 will be found
in the Summer and early Fall, especially when the water
temperature is lower than usual®, ‘community 1 will be found
in the Winter, especially when the number of plankton is high’,
‘community 2 will be found mostly in the Winter and Spring,
when the total number of plankton is lower’, ‘community
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(b) Daily community distributions predicted from environment data.
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entire dataset.

Fig. 6: The learned and predicted community distributions.
The horizontal axis represents time, and each community is
represented by a color. The fraction of observations on a day
belonging to a particular community are shown by the size of
the colored area (totalling 1 for each day). Our model finds
strong seasonal structure in the data without having such an
assumption built-in.

3 will be found mostly in the Summer and Fall, but with
lower probability than community 0°, and ‘community 4 will
be found in the late Winter and Spring, when the water
temperature is slightly higher than usual’. We found that the
best performing community models showed strong seasonal
structure, rather than relying on other variables. This is made
evident by the average community distribution for each day
of the year over the entire dataset, before regression (Fig. 6¢).
Note that there are many possible community decompositions,
and although our model makes weak assumptions about the
temporal smoothness of the communities, it does not have
any prior knowledge of the seasonal nature of the data. By
performing hyperparameter optimization over the downstream
regression task, we were able to select a model with just the
right level of sparsity and temporal smoothness to emphasize
this seasonal aspect and describe the data in an interpretable
way.
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(b) The weights used by our linear regression model to predict commu-
nities from environment variables. Note that nearly all of the magnitude
is on a small subset of the variables, meaning that we can explain each
community very simply.

Fig. 7: Our model is not only an interesting demonstration of a
general method, it also produces valuable data for understand-
ing the factors involved in Phytoplankton ecology.

V. DISCUSSION

All three of the regression models, and especially the
community based model are able to make remarkably good
predictions of the taxon distributions using mainly the day of
the year. This indicates that the taxa observation count data
is strongly seasonally structured. Nevertheless, the regression
models lose a significant amount of information, even in
the case of the reduced dimensionality community prediction
problem (Fig. 6b). In particular, the regressor captures most of
the low-frequency variation in the communities because it can
be explained by the season, but much of the high-frequency
variation is lost, and as a result, the predicted community dis-
tributions are less sparse than the true community distributions.



An interesting area of future work is in performing a
similar experiment with a more realistic regression model.
Clearly, the performance of the ultimate regression models
could be improved by careful choice of more factors and higher
order terms which are known to be related to phytoplankton
productivity. It is likely that overall performance could be
increased by using more complex models as well, for in-
stance a feedforward artificial neural network, or other popular
machine learning techniques. In particular, sequential models,
which predict tomorrow’s community distribution from today’s
community distribution and a set of environmental factors are
a promising method to incorporate population dynamics into
our system. Despite the myriad opportunities for improving
this portion of the model, the goal of regression in this
experiment is to ensure that there is a simple interpretation of
the communities, not only to accurately predict the data. There
is a balance to be struck between the complexity of the model
and how easy to interpret it is. In addition, more complex
models run a higher risk of overfitting and require more data
to train accurately, limiting their practical applications.

A further outcome of our experiment is the communities
themselves learned by our model (Fig. 7a). We found that
across different hyperparameter choices, the top few most
active communities were relatively similar to those presented
here. Some associations based on our model have ready expla-
nations. For instance community 1 is dominated by the taxons
“mix_elongated”, representing miscellaneous centric diatiom
chains, and “leptocylindrus”, which both exhibit elongated
morphologies and easily confuse the IFCB’s vision-based clas-
sification system. As a more exciting example, communities 2
and 4 are the only communities with significant probability of
observing the taxon “Guinardia”, and are predicted by warm
water temperatures, while Guinardia delicatula populations
have been noted to be negatively associated with parasites that
do not survive during cold winters [8]. In our future work we
hope to find more such examples which support the validity
of our community model, and use our model to clarify less
well-understood aspects of phytoplankton population ecology.

Finally, our community model takes a complex, high-
dimensional population dataset, and offers immediate ques-
tions to pursue related to the ecology of specific taxa near
MVCO. For instance, in Fig. 6a we see that community
4 begins to appear a little earlier each year from 2011, at
first appearing only in the spring, and by 2015 persisting
throughout the Winter. If we were to only look at the timeseries
for the individual taxa, “mix_elongated”, “Guinardia”, and
“Cylindrotheca” which dominate community 4, this pattern
is not obvious at all (See Ground-Truth, Fig. 8). However,
our model highlights that these taxa often co-occur, and that
the pattern of co-occurrence shifts over the years. We hope
to stimulate discussion and explanation of this and similar
phenomena found in this dataset.

VI. CONCLUSION

In this work we have presented a novel probabilistic
generative model for phytoplankton communities. The model

and hyperparameter selection procedures are designed with the
goal of being simultaneously accurate, in terms of losing min-
imal information about the true distribution of phytoplankton
species in a given time window, and interpretable, in terms
of the presence of a distribution of communities being simple
to predict from a set of naively chosen environment variables.
We demonstrated our model on an extensive public dataset
featuring counts of 47 plankton taxa and 18 environment
variables recorded over 7.5 years at MVCO. We found that
our method produced more interpretable representations of the
count data than PCA or direct regression. Our model provides
a novel general way to understand high-dimensional datasets of
discrete taxon observations, as well as intriguing observations
about the populations of phytoplankton near MVCO.
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Predicted Timeseries for Example Taxa

Ground-Truth =  Community Model = PCA Model = Direct Regression
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Fig. 8: Probability a random observation on a given day was a particular taxon, for 5 examples of highly abundant taxa. The
observed data, and regression outputs for each of the three methods are shown. Note that the predictions of community model
regression are relatively smooth, while PCA and Direct regression vary unrealistically rapidly.



