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We develop a probabilistic generative model for phytoplankton communities, 
learning the associations between taxa by co-occurrence patterns in an 
extensive dataset.

The community model is trained using a method designed to ensure that it is 
interpretable in terms of simple environmental factors.

We demonstrate that our model affords a more accurate, simple interpretation 
of the distribution of taxa than approaches which do not consider community 
structure.

Our model indicates a remarkably strong seasonal structure in the distribution of 
taxa found near Martha's Vineyard, MA.

Abstract

Introduction

Our model represents a day’s measurements as a probability distribution over taxa.

These are factored into a distribution over communities for each day and a 
distribution over taxa for each community.

We use a Bayesian Non-Parametric Spatio-Temporal Topic Model [2].
With this model:
• Community mixtures and communities are sparse
• Observations near each other share a 

community prior
• The number of communities

is set automatically.

Interpretable Probabilistic Community Model

Discussion

IFCB autonomously detects and classifies phytoplankton in water samples into 
47 taxa [1]. It has been deployed near Martha’s Vineyard, MA, sampling 
continuously since Jan. 2009. 

The interactions of each individual taxon with the environment require complex 
models to understand. Individually modelling each requires a prohibitive 
amount of data.

Taxa mainly co-occur with a small number of other taxa, i.e. they form 
communities. We can learn these communities from the IFCB dataset with a 
probabilistic generative model.

We select amongst the possible community models by their interpretability. The 
selected model’s communities can be accurately predicted by a simplistic 
regression model driven by basic oceanographic data.

Results

Regression Inputs
Ocean Summary Meteorological Summary

& Other
Wave Height Mean Wind Speed

Wave Period Mean Wind Dir.

Wave Dir. Relative Humidity

ADCP Vel. (2 depths) Barometric Pressure

ADCP Dir. (2 depths) IR Rad. Capt.

Tide Solar Rad. Capt.

Water Temp Num. Plankton Observed

Salinity Day of Year

Models Compared
Regression Method Regression Target

Our Community Model Distribution of Communities 
→ DistribuƟon of Taxa

Direct Regression Distribution of Taxa

PCA Regression Truncated SVD Weights → 
Distribution of Taxa

Despite the simplicity of the regression model, prediction via communities captures 
most of the low frequency variation in the taxon distributions
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The communities learned by our model provide an interpretable view of complex, 
shifting phytoplankton populations.

Daily Taxon Log-Distributions (Predicted)

Daily Taxon Log-Distributions (Measured)
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Taxon distribution regression via our community model shows less 
information lost than regression via PCA or direct regression.

The averaged community distribution for each year-day in the best 
performing model shows strong seasonal structure. The five most 
common communities can be identified by their active and dormant 
seasons.

Error in Predicted Taxon Distributions
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Average Community Distribution per Year-Day
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Our related and ongoing work includes more sophisticated regression models, 
applications such as search for rare taxa [3], and sample-efficient community 
model training techniques.


